Structure Homology Modeling of Thaumetopoein, an Urticating Protein from Thaumetopoea pityocampa Schiff, Using SWISS-MODEL Workspace
نویسندگان
چکیده
Background Thaumetopoea pityocampa Schiff., or pine caterpillar, is a “phenomenal” insect. The term comes from the Greek cámpa (caterpillar), pítys (pine), poieo (does), tháuma (wonders) [1]. When developing larvae, is taking place on the back of the caterpillar pine processionary, a producer apparatus urticating hairs, protectors caterpillars [2]. These hairs of the pine processionary caterpillar (Thaumetopoea pityocampa Schiff.) causes dermatological reactions in humans by contact with its irritating larvae hairs known as erucism, the pathogenic effects are not limited to the skin but extend to the eyes and, more rarely, to the respiratory system [1,3]. A various techniques demonstrated the existence of a specific protein fraction in caterpillar hairs which has urticating properties and which we have called thaumetopoein [3-5]. The structure and properties of this protein have not been fully elucidated, knowing that Rodriguez-Mahillo et al. have published in 2012 the protein sequence in under NCBI ID: CCJ09295 and EMBL EBI ID: HE962022. In this study, we are trying using bioinformatics and modeling tools to give a prediction model of thaumetopoein structure and its properties. Materials and Methods
منابع مشابه
Molecular Modeling and Docking Studies on the First Chlorotoxin-Like Peptide from Iranian Scorpion Mesobuthuseupeus (Meict) and SNP Variants of Matrix Methaloproteinase-2 (MMP-2)
Background: MeICT is the first chlorotoxin-like peptide isolated from the Iranian Scorpion Mesobuthus eupeus. Chlorotoxin (CTX) is a neurotoxin that specially binds to (MMP-2) on ma-lignant cells and now is used in treatment of glioma. In the present study, we have used homology modeling to propose the 3D structure of MeICTand analyze its interaction with MMP-2 and its SNP types. Methods:The ...
متن کامل[Skin reactions on exposure to the pine processionary caterpillar (Thaumetopoea pityocampa)].
The pine processionary caterpillar is the larval form of the Thaumetopoea pityocampa moth. Mediterranean forests regularly suffer plagues of this insect, which has been moving north as a result of global warming. When the small urticating hairs that develop during the last 3 larval stages are shed and can become airborne. If they come in contact with skin, they can cause a variety of reactions,...
متن کاملThe SWISS-MODEL workspace: a web-based environment for protein structure homology modelling
MOTIVATION Homology models of proteins are of great interest for planning and analysing biological experiments when no experimental three-dimensional structures are available. Building homology models requires specialized programs and up-to-date sequence and structural databases. Integrating all required tools, programs and databases into a single web-based workspace facilitates access to homol...
متن کاملThe SWISS-MODEL Repository and associated resources
SWISS-MODEL Repository (http://swissmodel.expasy.org/repository/) is a database of 3D protein structure models generated by the SWISS-MODEL homology-modelling pipeline. The aim of the SWISS-MODEL Repository is to provide access to an up-to-date collection of annotated 3D protein models generated by automated homology modelling for all sequences in Swiss-Prot and for relevant models organisms. R...
متن کاملSkin Reactions to Pine Processionary Caterpillar Thaumetopoea pityocampa Schiff
Pine caterpillar, Thaumetopoea pityocampa Schiff, is a phyto- and xylophagous lepidopteran, responsible for the delay in the growth or the death of various types of pines. Besides nature damage, pine caterpillar causes dermatological reactions in humans by contact with its irritating larvae hairs. Although the dermatitis occurs among outdoor professionals, it is primarily extraprofessional. Con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017